Identifying how drug efflux mechanisms impact Acinetobacter baumannii evolutionary paths to ciprofloxacin resistance

Authors

  • Naomi Bastiampillai University of Pittsburgh
  • Alecia Rokes Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
  • Vaughn Cooper Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

DOI:

https://doi.org/10.5195/pur.2024.81

Abstract

Acinetobacter baumannii is a multi-drug resistant pathogen commonly found in clinical settings. This pathogen frequently uses efflux pumps to mitigate antibiotic treatment stress and eliminate the drug. When A. baumannii is exposed to antibiotics, it often develops mutations in the efflux pump regulator genes, causing an increase in efflux pump production. We hypothesize that efflux is a key pathway that leads to treatment failure in A. baumannii infections. The extent to which increasing drug efflux impacts other cellular functions remains unknown. To identify how efflux pump mutations impact growth, resistance, and evolvability, wildtype A. baumannii laboratory strain 17978UN, along with four mutants of this strain, each with a single nucleotide polymorphism (SNP) in an efflux pump regulator (adeL L341R, adeN I49N, adeR D23Y, and adeS R152S), were propagated in the presence of antibiotic and an efflux pump inhibitor to place selective pressure on the isolates. SNPs increase the production of efflux pumps; inhibiting efflux ability will determine if the effect of each SNP is nullified. All evolved populations demonstrated differences in fitness and antibiotic resistance in comparison to their respective ancestors; the extent of adaptation affecting each phenotype was highly dependent on the regulator that was mutated. Counterintuitively, efflux inhibitors also placed stress on wild-type A. baumannii which leads to antibiotic resistance. These results demonstrate that efflux regulator mutations can influence population adaptability and cause treatment failure. Understanding the role that different efflux systems play in treatment failure and drug resistance evolution will be instrumental in developing treatment strategies that hinder the development of antibiotic resistance.

References

Ardebili, A., Lari, A. R., Beheshti, M., & Lari, E. R. (2015). Association between mutations in gyrA and parC genes of Acinetobacter baumannii clinical isolates and ciprofloxacin resistance. Iranian Journal of Basic Medical Sciences, 18(6), 623–626.

Ardebili, A., Talebi, M., Azimi, L., & Rastegar Lari, A. (2014). Effect of Efflux Pump Inhibitor Carbonyl Cyanide 3-Chlorophenylhydrazone on the Minimum Inhibitory Concentration of Ciprofloxacin in Acinetobacter baumannii Clinical Isolates. Jundishapur Journal of Microbiology, 7(1), e8691. https://doi.org/10.5812/jjm.8691

C. CLSI, M100: Performance Standards for Antimicrobial Susceptibility Testing (Clinical and Laboratory Standards Institute, ed. 32, 2022).

Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D., & Marx, C. J. (2011). Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science (New York, N.Y.), 332(6034), 1190–1192. https://doi.org/10.1126/science.1203799

Coyne, S., Rosenfeld, N., Lambert, T., Courvalin, P., & Périchon, B. (2010). Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 54(10), 4389–4393. https://doi.org/10.1128/AAC.00155-10

Darby, E. M., Bavro, V. N., Dunn, S., McNally, A., & Blair, J. M. A. (2023). RND pumps across the genus Acinetobacter: AdeIJK is the universal efflux pump. Microbial Genomics, 9(3), mgen000964. https://doi.org/10.1099/mgen.0.000964

Hawkey, J., Ascher, D. B., Judd, L. M., Wick, R. R., Kostoulias, X., Cleland, H., Spelman, D. W., Padiglione, A., Peleg, A. Y., & Holt, K. E. (2018). Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microbial Genomics, 4(3), e000165. https://doi.org/10.1099/mgen.0.000165

Huo, W., Busch, L. M., Hernandez-Bird, J., Hamami, E., Marshall, C. W., Geisinger, E., Cooper, V. S., van Opijnen, T., Rosch, J. W., & Isberg, R. R. (2022). Immunosuppression broadens evolutionary pathways to drug resistance and treatment failure during Acinetobacter baumannii pneumonia in mice. Nature Microbiology, 7(6), 796–809. https://doi.org/10.1038/s41564-022-01126-8

Kryazhimskiy, S., Rice, D. P., Jerison, E. R., & Desai, M. M. (2014). Global Epistasis Makes Adaptation Predictable Despite Sequence-Level Stochasticity. Science (New York, N.Y.), 344(6191), 1519–1522. https://doi.org/10.1126/science.1250939

Lari, A. R., Ardebili, A., & Hashemi, A. (2018). AdeR-AdeS mutations & overexpression of the AdeABC efflux system in ciprofloxacin-resistant Acinetobacter baumannii clinical isolates. The Indian Journal of Medical Research, 147(4), 413–421. https://doi.org/10.4103/ijmr.IJMR_644_16

Lee, H., & Lee, H. (2016). Clinical and Economic Evaluation of Multidrug-Resistant Acinetobacter baumannii Colonization in the Intensive Care Unit. Infection & Chemotherapy, 48(3), 174–180. https://doi.org/10.3947/ic.2016.48.3.174

Leus, I. V., Adamiak, J., Trinh, A. N., Smith, R. D., Smith, L., Richardson, S., Ernst, R. K., & Zgurskaya, H. I. (2020). Inactivation of AdeABC and AdeIJK efflux pumps elicits specific nonoverlapping transcriptional and phenotypic responses in Acinetobacter baumannii. Molecular Microbiology, 114(6), 1049–1065. https://doi.org/10.1111/mmi.14594

Levin-Reisman, I., Brauner, A., Ronin, I., & Balaban, N. Q. (2019). Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proceedings of the National Academy of Sciences, 116(29), 14734–14739. https://doi.org/10.1073/pnas.1906169116

Levin-Reisman, I., Ronin, I., Gefen, O., Braniss, I., Shoresh, N., & Balaban, N. Q. (2017). Antibiotic tolerance facilitates the evolution of resistance. Science (New York, N.Y.), 355(6327), 826–830. https://doi.org/10.1126/science.aaj2191

Ouyang, Z., Zheng, F., Zhu, L., Felix, J., Wu, D., Wu, K., Gutsche, I., Wu, Y., Hwang, P. M., She, J., & Wen, Y. (2021). Proteolysis and multimerization regulate signaling along the two-component regulatory system AdeRS. iScience, 24(5), 102476. https://doi.org/10.1016/j.isci.2021.102476

Prajapati, J. D., Kleinekathöfer, U., & Winterhalter, M. (2021). How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chemical Reviews, 121(9), 5158–5192. https://doi.org/10.1021/acs.chemrev.0c01213

Sanchez-Carbonel, A., Mondragón, B., López-Chegne, N., Peña-Tuesta, I., Huayan-Dávila, G., Blitchtein, D., Carrillo-Ng, H., Silva-Caso, W., Aguilar-Luis, M. A., & del Valle-Mendoza, J. (2021). The effect of the efflux pump inhibitor Carbonyl Cyanide m-Chlorophenylhydrazone (CCCP) on the susceptibility to imipenem and cefepime in clinical strains of Acinetobacter baumannii. PLoS ONE, 16(12), e0259915. https://doi.org/10.1371/journal.pone.0259915

Santos-Lopez, A., Fritz, M. J., Lombardo, J. B., Burr, A. H. P., Heinrich, V. A., Marshall, C. W., & Cooper, V. S. (2022). Evolved resistance to a novel cationic peptide antibiotic requires high mutation supply. Evolution, Medicine, and Public Health, 10(1), 266–276. https://doi.org/10.1093/emph/eoac022

Santos-Lopez, A., Marshall, C. W., Scribner, M. R., Snyder, D. J., & Cooper, V. S. (2019). Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife, 8, e47612. https://doi.org/10.7554/eLife.47612

Shariati, A., Arshadi, M., Khosrojerdi, M. A., Abedinzadeh, M., Ganjalishahi, M., Maleki, A., Heidary, M., & Khoshnood, S. (2022). The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Frontiers in Public Health, 10, 1025633. https://doi.org/10.3389/fpubh.2022.1025633

Yoon, E.-J., Chabane, Y. N., Goussard, S., Snesrud, E., Courvalin, P., Dé, E., & Grillot-Courvalin, C. (2015). Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. mBio, 6(2), e00309-15. https://doi.org/10.1128/mBio.00309-15

Downloads

Published

2024-11-12

How to Cite

Bastiampillai, N., Rokes, A., & Cooper, V. (2024). Identifying how drug efflux mechanisms impact Acinetobacter baumannii evolutionary paths to ciprofloxacin resistance. Pittsburgh Undergraduate Review, 3(2), 1–22. https://doi.org/10.5195/pur.2024.81