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The diagnosis and prevention of neurodegenerative diseases is a heavily examined topic in 

the neuroscience discipline. Whether it be from the anatomical and biological perspectives or the 

psychological and sociological perspectives, the ultimate goal is to discover strategies to pinpoint 

the infection as soon as possible. This article begins with reviewing the small-world network 

structure and then combines the sociological and anatomical perspectives to explain the 

progression of neuronal death within the brain by using rsfMRI data and the Hegselmann-Krause 

Model of Opinion Dynamics to illustrate critical interactions between brain regions, and to predict 

the ultimate behavior of the neural network after initial degeneration.  

Following experimentation–in which critical regions related to Parkinson’s Disease were 

studied–thresholds were identified in specific regions which exhibited consistent converging 

behavior of the neural network toward either degenerative or regenerative directions. Furthermore, 

a simple graphical model is proposed to demonstrate the ranges of values in which current brain 

health could be of concern. We concluded that neuron death in one brain region can lead to further 

infection in the resulting system; however, some regions can also directly/indirectly compensate 

for the system’s decreased function. In future research endeavors, this could provide insight into 

developing more accurate predictive models for the goal of early detection of a diseased brain and 

its recovery.  
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Modeling Neurodegeneration and Regeneration 

in Parkinson’s Disease 
 

INTRODUCTION 

The progressive loss of neurons  can lead to 

various issues and deficiencies within the brain such as 

tremors in Parkinson’s disease (PD). As one of many 

neurodegenerative brain diseases that affect the 

majority of the elderly population, Parkinson’s disease 

(PD) affects approximately one million people 

currently in the U.S., and 50,000 to 60,000 new cases 

are diagnosed each year. Parkinson’s disease develops 

from the death of dopaminergic neurons in the 

substantia nigra pars compacta.1 Not only is dopamine 

– a critical excitatory neurotransmitter involved in 

learning, memory, and motor movement – underutilized 

in PD patients, but entire systems that involve the 

substantia nigra as a key component of information 

exchange are compromised. For example, dopaminergic 

signaling spans other brain regions including the basal 

ganglia, nucleus accumbens, and outer cortex. With the 

deficient function of the substantia nigra, the 

mesostriatal pathway that controls common behaviors 

such as reinforcement learning, and voluntary 

movement are also disrupted.  

 Efforts toward early diagnosis and prevention of 

the infection has been initiated from multiple ends of the 

neuroscience discipline such as deactivating an enzyme involved in apoptosis in order to halt 

neurodegeneration or controlling the overexcitement of glial cells by inhibiting ion channels.2,3 

While these methods are largely centered around clinical applications, other efforts have focused 

on  predictive models of neurodegeneration to serve the purpose of projecting the long-term results 

of an individual’s condition.4 

One emerging idea – the connectome – is the main interest of this study. Defined as a visual 

representation of the neural networks within the brain, it is capable of displaying both static and 

dynamic changes of cross communication between 

brain regions. Structural and functional MRI data is 

compatible with this mode of brain visualization as it 

can provide a real-life reference to compare predictive 

results from a  model. Therefore, this study utilized the 

rsfMRI data from The 1000 Functional Connectomes 

Project to serve as data for the experiments. Benefits of 

using MRI data in tandem with connectomes include 

being able to investigate brain networks that vary in 

scale – from between neurons at the synapse to ones 

that involve collections of nuclei – to explore major 

changes within the network due to neuroplasticity, and also reflect the unique aspects of brain 

Figure 1: The location of the Basal Ganglia 

within the human brain. A coronal section of the 

brain is cut out from this image to show the 

multiple structures of the basal ganglia. 

Figure 3: This figure shows a simple connectome 

of an individual’s brain with Parkinson’s 

Disease and the connections that are affected. 

Figure 2: Direct and indirect pathways of 

multiple types of neurons (including 

dopaminergic ones) between healthy and PD 

patients. Lack of signaling from regions of the 

brain can be identified in PD patients 
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structure and function in different individuals. In this case, the goal is to simulate 

neurodegeneration in a model  brain similar to Parkinson’s Disease in order to observe negative 

and positive changes within the entire brain system. 5, 6 

Taking a more sociological perspective on the issue of neurodegenerative diseases, the 

neural networks within the brain serve functions similar to those of a society. Neurons are 

analogous to individuals, and the synapses in which they exchange electrochemical signals are 

analogous to how individuals exchange information through  conversation . Graph theory complies 

with this concept by nodes (the neurons) and edges 

(their dynamic linkages). Trends within the many 

nodes and edges in a neural network can be 

simplified to three distinct parameters on a graph: 

Segregation, Integration, and Influence. 

Segregation is defined as the extent to which nodes 

tend to cluster together, similar to how students in a 

college may naturally gravitate to specific groups 

(this value is measured by the clustering 

coefficient). Integration is defined as how easy 

communication may occur within the given 

network, similar to how maybe  musically inspired  

students and  artistically inspired  students may find 

many things in common and communicate with each other much more smoothly compared to 

interactions between the theatre cluster and the math cluster of students (this value is measured by 

the path length and sometimes closeness). Finally, influence is defined as the “importance” of the 

nodes, similar to how the president of the club/group may exert an overwhelming impact  and 

reveal the group’s vulnerability to collapse if removed. The elements of graph theory are applied 

to the connectome to study the inner mechanisms of the brain network. 6, 9 

The novelty of this study resides in the application of opinion dynamics, specifically with 

respect to the Hegselmann-Krause Model – which again, taps into the sociological perspective of 

this issue of neurodegenerative disease. Opinion dynamics refers to the study of how opinions 

evolve and spread through social networks over time – its significance lies in its ability to explain 

real-world phenomena as common as the psychology of group behavior.7, 8, 10 In this study, 

opinions are analogous to the infection of neurons (the 

nodes), and the evolution and ultimate changes of social 

structure are analogous to the end state of the neural 

network. The Hegselmann-Krause Model specifically 

focuses on assigning values to the bulk behavior of a 

social – or in this case – neural network. The model 

involves dynamic agent-based simulations which can 

allow for predictive assumptions on various 

populations. It also considers the weight of “opinions” 

therefore influencing nodes’ receptivity and the eventual polarization of clusters. This model 

flawlessly incorporates all of the concepts above – the connectome, graph theory, and rsfMRI data 

sets since they are all built upon a similar foundation: the characteristics of agent interaction. 

As a result, the purpose of this study is also to gather and identify similar concepts from 

sociology, psychology, neuroscience, and computer science in order to propose a novel way of 

viewing the progression of neurodegenerative diseases. Specifically, rsfMRI data sets will be 

Figure 4: Examples of how segregation and 

integration engage in simple network analysis. 

Figure 5: This figure shows the Hegselmann-

Krause model equation. On the left, for each 

additional time increment, a node’s state is the 

average of all of the node states around it. 
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analyzed over time using the Hegselmann-Krause Model and the parameters of Graph Theory in 

order to predict brain states after initial infection/neuronal death. Furthermore, this study seeks to 

explore and improve the strategies of early diagnosis and prevention in order to provide patients 

and families with accurate information and assistance. 

 

RESULTS AND DISCUSSION 

Static Modeling of the Brain Network 

 In this section of the experiment, we wanted to review the existence of a small-world 

network within the brain. Implementing both the rsfMRI data from the 1000 Functional 

Connectomes Repository and the Network X Python Toolbox, a heat map was generated – where 

darker colors denoted stronger connections and vice versa – in order to visually represent the 

linkages between brain regions at a particular instant. 

 A small-world network is a type of graph in graph theory as having both high segregation 

(as measured by the clustering coefficient) and high integration (as measured by path length and 

sometimes closeness). When viewing the generated heat map, the model did in fact display distinct 

groups of brain regions with significantly stronger linkages compared to others surrounding them 

and also an off-diagonal path that allows easy exchange of information between clusters. We also 

referenced a similar generated graph of connections representing the U.S. Power Grid network.11, 

14 Both models exhibit multiple similarities in terms of clustering and path trends. The most 

probable explanation for these similarities is that a small-world network maximizes efficiency and 

minimizes energy costs within a given system, therefore providing the system with efficient 

communication, coordination, and robustness. As nature-made systems like the brain and 

manmade systems like the power grid continue to pursue efficiency, they naturally gravitate 

towards a small-world structure.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Static heat map representing connections 

between 180 different brain regions provided by the 

1000 Functional Connectomes Repository and 

Network X Python Toolbox 

Figure 7: A related image representing the U.S. 

Power Grid network 11, 14; both models show similar 

trends in shape and connectivity strength (dark 

color versus light color) 
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Following this, we decided to narrow down the brain regions to those related to Parkinson’s 

disease in order to study their unique connections and influences on the entire brain system. Fifty 

nodes (regions) were selected and placed on a separate heat map as they were either directly 

involved with controlling voluntary movement (something PD patients lack) or indirectly 

collaborating with said regions. The heat map was then used to find regions with the most influence 

on the 50-node network along with clustering coefficient and closeness calculations (closeness is 

the inverse of path length).13 The  purpose for this was to find regions that aligned with the Small-

World characteristics but also showed a significant impact on the network as a whole. Two regions 

on both the left/right hemispheres of the brain became the ultimate focus of the second section of 

the study: the putamen and the thalamus. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The putamen loses its critical role in the deficient brain system of a Parkinson’s patient 

since the region is located within the basal ganglia and heavily depends on intact dopamine 

communication to function. This region also receives direct input from the substantia nigra pars 

compacta – the source of neurodegeneration in Parkinson’s. With reduced dopamine input due to 

neurodegeneration in the substantia nigra pars compacta, this results in abnormal firing patterns 

and abnormal synchronization between the two structures and leads to dysregulation of cortico-

striatal-thalamic loops involved in motor programs. 

The thalamus loses its critical role in the deficient brain system of a Parkinson’s patient 

since the region directly facilitates communication between subcortical structures such as the basal 

ganglia and the cortex using the dopamine neurotransmitter. The dopamine loss upstream in the 

substantia nigra pars compacta and putamen causes downstream structures like the thalamus to 

change as well – specifically in altering activation thresholds of said neurons as a result of 

abnormal firing patterns. The incorrect information sent from the substantia nigra, and other 

structures further exacerbates the cardinal symptoms of Parkinson’s Disease. From this evidence, 

a) b) 

Figure 8: a) The generated 50-node heat map for selected regions related to Parkinson’s Disease; small world 

characteristics are consistent with the previous heat map containing high clustering and short path length b) 

Clustering Coefficient and Closeness measurements of various high impact regions within the 50-node network 

(Closeness is the inverse of Path Length); the left/right putamen and thalamus were chosen for the second part of the 

experiment 
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it is clear that the putamen and thalamus play integral roles in regulating and initiating motor 

movement and weaken the bulk of the brain system when removed. 

 

Dynamic Modeling of the Brain Network 

In this section of the experiment, we wanted to simulate the progression of 

neurodegenerative diseases such as Parkinson’s disease through a dynamic examination of the 

rsfMRI data from the 1000 Functional Connectomes Repository. The DyNET Python Toolbox and 

Hegselmann-Krause Model were employed to generate a visual representation of the changes in 

brain states over one hundred time iterations. Specifically, we wanted to observe the occurrence of 

a threshold when the initial states of particular brain regions were manipulated (healthy versus 

infected).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graphs are formatted so that the x-axis represents time (t) from 1 to 100, the y-axis 

represents brain states ranging from -1 to 1. In the original Hegselmann-Krause Model, opinions 

were expressed on a range from 0 to 1 where y = 0 symbolizes one extreme of the spectrum (i.e., 

absolute certainty, fully trust, etc.) while y = 1 symbolizes the other extreme (i.e., absolute 

uncertainty, fully opposed etc.) However, we decided on a range from -1 to 1 to symbolize 

“absolute degeneration” and “absolute regeneration” of the brain system, respectively. Each line 

on the graph represented one node of the 50-node network chosen from the heat map, and all but 

the putamen and thalamus nodes’ initial states were manipulated in order to control other variables. 

Therefore, the results from the simulations would only be an effect of the manipulated initial states. 

Out of all the simulations executed, the extreme positive, extreme negative, and threshold 

are displayed. Additionally, one of either the left or right putamen/thalamus remained constant at 

0.499 or -0.499 as to assess the compensative ability of the contralateral region when the other was 

in an infected initial state. Ultimately, the simulation results were compiled into a proposed phase 

a) b) 

Figure 9: a) Simulations on the Left/Right Putamen where initial states range from -0.5000< x <0.5000; one side 

(RP1) stayed constant at the highest positive or highest negative value as also to test the compensative ability of brain 

regions when one side is infected and the other is healthy; a threshold was observed at LP1 = ± 0.1647; all other 

nodes’ initial states stayed constant at zero b) Simulations on the Left/Right Thalamus where initial states range from 

-0.5000< x<0.5000; one side (LT1)  stayed constant at the highest positive or highest negative value as also to test 

the compensative ability of brain regions when one side is infected and the other is fully healthy; a threshold was 

observed at RT1 = ± 0.1810; all other nodes’ initial state stayed constant at zero 
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diagram of neurodegeneration and regeneration progression based on the manipulated initial states 

of the putamen and thalamus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From these phase diagrams, it can be observed that there is an approximate divide between 

when initial brain region states lead to major infection or major recovery – denoted by the line 

connecting the threshold values. Not only that, but in a myriad of other simulations between the 

extremes and the threshold values, the regions on either side of the brain could compensate for 

minorly infected initial states of its counterpart – the rates of “degeneration” of all regions of the 

system were minimal up to a point where they all dropped to full infection. Of course, this aligns 

with the fact that regions on the opposite side of the brain may be capable of accepting partial 

responsibility of the functions of its counterpart only for a short amount of time before the 

progression of neuron loss leads to decreased brain function. From this dynamic modelling of 

neurodegeneration in a simulated neural network, we were able to distinguish between bulk 

network behaviors that signified infection or recovery of the brain system and also reviewed the 

short-term compensative ability of opposite hemisphere structures during the onset of infection. 

 

CONCLUSION 

The goal of this study is to gather and identify similar concepts from sociology, psychology, 

neuroscience, and computer science in order to propose a novel way of viewing the progression of 

neurodegenerative diseases. Following experimentation, a static and dynamic modelling of brain 

degeneration and regeneration was proposed. Using the rsfMRI data sets, the concepts of 

Connectomics, parameters of Graph Theory, and the Network X Python toolbox gave way to a 

detailed examination of particular brain regions that not only had a significant influence on global 

brain communication, but also were lacking function and efficiency in Parkinson’s Disease. 

Figure 10: a) Phase diagram of neurodegeneration/regeneration due to healthy/infected brain states of the left and 

right putamen; a line connects the threshold values (± 0.1647) to separate behaviors that converge on major infection  

from behaviors that converge on major recovery based on the nature of the Hegselmann-Krause model b) Phase 

diagram of neurodegeneration/regeneration due to healthy/infected brain states of the left and right thalamus; a line 

connects the threshold values (± 0.1810) to separate behaviors that converge on major infection  from behaviors that 

converge on major recovery based on the nature of the Hegselmann-Krause model 

a) b) 
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The Hegselmann-Krause Model and the DyNET Python Toolbox were then applied to the 

rsfMRI data sets from the 1000 Functional Connectomes Project in order to display and predict 

bulk behaviors of a simulated neural network after initial infection/neuronal death. This yielded 

thresholds that divided initial states that would lead to further infection or recovery of the neural 

network, but also exhibited the short-term compensative behavior of brain regions in opposite 

hemispheres to replace partial functions in the deficient side during the onset of infection. 

This experiment is the first step in examining the progression of neurodegeneration within 

a simulated brain. Of course, this model is purely predictive, and as a result is currently used with 

old data references within the 1000 Functional Connectomes Project repository. The model also 

attempts to dynamically represent (string together) static brain scan images into a comprehensive 

display of brain region state transitions between infected and healthy. In this case, this study is 

limited by data type. 

In future research, though, once real-time brain scan data can be recorded from patients 

with neurodegenerative diseases such as Parkinson’s Disease, this proposed model will have the 

capability of predicting unique results in terms of disease progression to accurately diagnose the 

severity of the brain disease based on the current brain’s initial states and predict the progression 

of the disease against time in order to assist in providing the best treatments possible. 

 

METHODS 

Materials Included: 

• Network X Python Toolbox for Static Graph 

• DyNET Python Toolbox for Dynamic Graph 

• 1000 Functional Connectome rsfMRI Brain Scan Repository for General Data Collection 

• Hegselmann-Krause Model Equation to Simulate Dynamic Brain Activity Over Time 

Human participants were not involved in the experiment. Only the 1000 Functional  

 

Connectomes rsfMRI Brain Scan Repository was used for data collection. Due to the fact 

that this repository was publicly available, ethical considerations were not applicable. 
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